DINETH ILAPPERUMA

MECHANICAL ENGINEERING AT THE UNIVERSITY OF MANCHESTER

dineth.ilapperuma@gmail.com

in linkedin.com/in/ilapperuma

+44 7585 261005

VIMA - VISUAL IMPAIRMENT MOTION ASSISTANT

VIMA

*click the VIMA logo to learn more

What?

- VIMA is a detachable handle harnessing strategically placed sensors and vibrative actuators providing real time feedback to sense obstacles.
- It detects overhanging objects and replicates white cane sensations.

How?

- Produced 3D CAD models and detailed 2D engineering drawings for VIMA's Enclosure using SolidWorks
- Used Arduino and several sensors for electrical infrastructure
- Fabricated using rapid prototyping methods (3D Printing)

Results

- Outputted obstacle detection data and haptic feedback with a 95% similarity to traditional white canes.
- Provided visually impaired users with accurate navigation in urban environments

Presence Distance Measurement Input

Distance Analysis Obstacle Detection Haptic Feedback Output

DINETH ILAPPERUMA

MECHANICAL ENGINEERING AT THE UNIVERSITY OF MANCHESTER

■ dineth.ilapperuma@gmail.com

in linkedin.com/in/ilapperuma

+44 7585 261005

AUTOMATED TESTBED SETUP - NAFFCO NAFFCO

What?

- Reduce amount of time it takes to test fire pumps for QA/QC
- Minimize human operator error

How?

- Used Pneumatic Actuator to design flow control
- Used **SCADA** software for real time motoring of system

Results

• The design fulfilled its purpose with 97% accuracy (vs.85% previously when readings were done by humans)

KNIFE EDGED CRANKSHAFT - NAFFCO

- Design and fabricated a knife edged crankshaft for improved efficiency in fire pump motors
- Performed a needs analysis to initiate the design process

How?

- Designed on **SolidWorks**
- Used CNC machining to cut out desired shape

Results

- Increased efficiency by 8% due to decreased windage and rotational mass
- Improved High-RPM Performance

DINETH ILAPPERUMA

MECHANICAL ENGINEERING AT THE UNIVERSITY OF MANCHESTER

dineth.ilapperuma@gmail.com

in linkedin.com/in/ilapperuma

+44 7585 261005

HYPERLOOP - HYPERLOOP MANCHESTER

*click the BEE logo to learn more

What?

• Designed Hyperloop chamber exterior door system to withstand a • Used ANSYS for FEA simulation of pressure difference of 1 bar

How?

- Used **SolidWorks** to design doors
- structure

Results

• Designed a cost effective door that met the design requirements

PIPE CRAWLER - IMECHE DESIGN CHALLENGE 2023

What?

- · Create a lightweight and sturdy internal pipe crawler
- Pipe crawler is designed to climb pipe in the fastest time

How?

- Used SolidWorks to design the crawler
- Used **Excel** to produce the bill of materials

Results

• Climed 3m pipe in 14 seconds

LATHE

What?

• Designed a lathe with a 3 jaw chuck

How?

- Used SolidWorks to design this due to the lathe's complex geometry and multiple components.
- Calculated cutting force, spindle bearing loads and deflection.
- Applied GD&T on all drawings.